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Nonlinear control techniques by means of a software sensor that are commonly used in chemical engineering
could be also applied to genetic regulation processes. We provide here a realistic formulation of this procedure
by introducing an additive white Gaussian noise, which is usually found in experimental data. Besides, we
include model errors, meaning that we assume we do not know the nonlinear regulation function of the process.
In order to illustrate this procedure, we employ the Goodwin dynamics of the concentrations �B. C. Goodwin,
Temporal Oscillations in Cells �Academic, New York, 1963�� in the simple form recently applied to single gene
systems and some operon cases �H. De Jong, J. Comput. Biol. 9, 67 �2002��, which involves the dynamics of
the mRNA, given protein and metabolite concentrations. Further, we present results for a three gene case in
coregulated sets of transcription units as they occur in prokaryotes. However, instead of considering their full
dynamics, we use only the data of the metabolites and a designed software sensor. We also show, more
generally, that it is possible to rebuild the complete set of nonmeasured concentrations despite the uncertainties
in the regulation function or, even more, in the case of not knowing the mRNA dynamics. In addition, the
rebuilding of concentrations is not affected by the perturbation due to the additive white Gaussian noise and
also we managed to filter the noisy output of the biological system.
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I. INTRODUCTION

Gene expression is a complex dynamic process with intri-
cate regulation networks all along its stages leading to the
synthesis of proteins �1�. Currently, the most studied aspect
is that of the regulation of the initiation of transcription at the
DNA level. Nevertheless, the expression of a gene product
may be regulated at several levels, from transcription to
RNA elongation and processing, RNA translation, and even
as post-translational modification of protein activity. Control
engineering is a key discipline with tremendous potential to
simulate and manipulate the processes of gene expression. In
general, the control terminology and its mathematical meth-
ods are poorly known to the majority of biologists. Many
times the control ideas are simply reduced to the homeostasis
concept. However, the recent launching of the IEE journal
Systems Biology �2� points to many promising developments
from the standpoint of systems analysis and control theory in
biological sciences. Papers like that of Yi et al. �3�, in which
the Barkai and Leibler robustness model �4� of perfect adap-
tation in bacterial chemotaxis is shown to have the property
of a simple linear integral feedback control, could be consid-
ered as pioneering work in the field.

We mention here two important issues. The first one is
that the basic concept of state of a system or process could

have many different empirical meanings in biology. For the
particular case of gene expression, the meaning of a state is
essentially that of a concentration. The typical problem in
control engineering that appears to be tremendously useful in
biology is the reconstruction of some specific regulated
states under conditions of limited information. Moreover,
equally interesting is the issue of noise filtering. It is quite
well known that gene expression is a phenomenon with two
sources of noise: one due to the inherent stochastic nature of
the process itself and the other originating in the perturbation
of the natural signal due to the measuring device. In the
mathematical approach, the latter class of noise is considered
as an additive contamination of the real signal, and this is
also our choice here. Both issues will form the subject of this
investigation.

Taking into account the fact that rarely one can have a
sensor on every state variable, and some form of reconstruc-
tion from the available measured output data is needed, soft-
ware can be constructed using the mathematical model of the

process to obtain an estimate X̂ of the true state X. This
estimate can then be used as a substitute for the unknown
state X. Ever since the original work by Luenberger �5�, the
use of state observers has proven useful in process monitor-
ing and for many other tasks. We will call herein as an ob-
server, in the sense of control theory, an algorithm capable of
giving a reasonable estimation of the unmeasured variables
of a process. For this reason, it is widely used in control,
estimation, and other engineering applications.

Since almost all observer designs are heavily based on
mathematical models, the main drawback is precisely the
dependence of the accuracy of such models to describe the
naturally occurring processes. Details such as model uncer-
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tainties and noise could affect the performance of the observ-
ers. Taking into account these details is always an important
matter and should be treated carefully. Thus, we will pay
special attention in this research to estimating unknown
states of the gene expression process under the worst pos-
sible case, which corresponds to noisy data, modeling errors,
and unknown initial conditions. These issues are of consid-
erable interest and our approach is a novel contribution to
this important biological research area. Various aspects of
noisy gene regulation processes have been dealt with re-
cently from both computational and experimental points of
view in a number of interesting papers �6�. We point out that
since we add the noise � to the output of the dynamic system
in the form y=CX+� �see Eqs. � in Sec. IV� it seems that its
origin is mainly extrinsic to the regulation process, even
though it could be considered as a type of intrinsic noise with
respect to the way the experiment is performed. On the other
hand, when writing the equation in the form y=C�X+ I��,
where � is a vector of noisy signals, one can see that the
observer could estimate states that are intrinsically noisy,
even though the processes are still deterministic.

II. BRIEF ON THE BIOLOGICAL CONTEXT

Similar to many big cities, with heavy traffic, biological
cells host complicated traffic of biochemical signals at all
levels. Like cars on a busy highway, millions of molecules
get involved in the bulk of the cell in many life processes
controlled by genes. At the nanometer level, clusters of mol-
ecules in the form of proteins drive the dynamics of the
cellular network that schematically can be divided into four
regulated parts: the DNA or genes, the transcribed RNAs, the
set of interacting proteins, and the metabolites. Genes can
only affect other genes through specific proteins, as well as
through some metabolic pathways that are regulated by pro-
teins themselves. They act to catalyze the information stored
in DNA, all the way from the fundamental processes of tran-
scription and translation to the final quantities of produced
proteins.

Considering the enormous complexity of multicellular or-
ganisms generated by their large genomes, one can neverthe-
less still associate at least one regulatory element to any
component gene. Each regulatory system is then composed
of two elements at the DNA level: the gene that encodes a
transcriptional regulator, and the target in the DNA where
this regulator binds to, and exerts its activator or repressor
function in transcription. These loops of interactions repre-
sent a fundamental piece to understand the functioning of
complex regulatory transcriptional and translational net-
works �7,8�. For the purpose of modeling, it is essential to
generate simple models that help to understand elementary
dynamical components of these complex regulatory net-
works as molecular tools that participate in an important way
in the machinery of cellular decisions, that is to say, in the
behavior and genetic program of cells.

Many entities in cellular networks can be identified as the
basic units of regulation, mainly distinguished by their
unique roles with respect to the interaction with other units.
These basic units are as follows: the genes with codifying

content also described as structural genes; the regulatory el-
ements that in the old literature were called regulatory genes,
which are smaller fragments of DNA sequences �of the order
of 5 to 20 nucleotides� called operator sites, to where regu-
latory proteins as well as the RNA polymerase bind; the
messenger RNA or mRNA that are the products of transcrip-
tion and form the template for the subsequent production of
proteins, as encoded by the corresponding gene; the forms of
each protein and protein complexes, as well as all metabo-
lites present in the cell, either as the products of enzymatic
reactions or internalized by transport systems. These units
have associated values that either represent concentrations or
levels of activation. These values depend on both the values
of the units that affect them due to the aforementioned
mechanisms and on some parameters that govern each spe-
cial form of interaction.

This gives rise to genetic regulatory systems structured by
networks of regulatory interactions between DNA, RNA,
proteins, and small molecules. The simplest regulatory net-
work is made of only one gene that is transribed into mRNA;
this mRNA is then translated into proteins, which can be
activated or inhibited as a result of their interaction with
other proteins or with specific metabolites. Transcriptional
regulators are two-head structures, one being the domain of
DNA interaction, and the other one the so-called allosteric
domain that interacts with specific metabolites. Taking to-
gether these properties of the molecular machinery, one can
envision that a gene encodes a protein that can regulate its
own activity, either positively or negatively, depending on its
effect in enhancing or preventing the RNA polymerase tran-
scriptional activity on its own gene by means of binding to
an operator site upstream of its own encoding gene. Up-
stream here meaning before the beginning of the gene where
transcription initiates. A mathematical model of such a bio-
logical inhibitory loop has been discussed for a long time by
Goodwin and recurrently occurred in the literature, most re-
cently being reformulated by De Jong �9�. Although this case
could look unrealistic, there are simple organisms, such as
bacteria, where one regulatory loop may prove essential, as
recently discussed in detail by Ozbudak et al. �10�. However,
already at the level of two genes, the situation gets really
complicated, mostly because of the possible formation of
heterodimers between the repressors and other proteins
around. These heterodimers are able to bind at the regulatory
sites of the gene and therefore can affect it and lead to modi-
fications of the regulatory process.

Recent development of experimental techniques, like
cDNA microarrays and oligonucleotide chips, have allowed
rapid measurements of the spatiotemporal expression levels
of genes �11–13�. In addition, formal methods for the mod-
eling and simulation of gene regulation processes are cur-
rently being developed in parallel to these experimental
tools. As most genetic regulatory systems of interest involve
many genes connected through interlocking positive and
negative feedback loops, an intuitive understanding of their
dynamics is hard to obtain. The advantage of the formal
methods is that the structure of regulatory systems can be
described unambiguously, while predictions of their behavior
can be made in a systematic way.

To make the description very concrete, it is interesting to
look at well-defined, i.e., quite simple mathematical models
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that we present in the next section that refers to single gene
cases and single gene clusters �operons�. The nonlinear soft-
ware sensor for such cases is discussed in Sec. IV. A three-
gene case is treated as an extension to regulatory gene net-
works and shows that the method of forward engineering still
works for reasonably simple gene networks. The concluding
section comes at the end of the paper.

III. MATHEMATICAL MODEL FOR GENE REGULATION

In this section, we use the very first kinetic model of a
genetic regulation process developed by Goodwin in 1963
�15�, generalized by Tyson in 1978 �16�, and most recently
explained by De Jong �9�. The model in its most general
form is given by the following set of equations:

Ẋ1 = K1nr�Xn� − �1X1, �1�

Ẋi = Ki,i−1Xi−1 − �iXi, 1 � i � n . �2�

The parameters K1n ,K21,… ,Kn,n−1 are all strictly positive
and represent production constants, whereas �1 ,… ,�n are
strictly positive degradation constants. These rate equations
express a balance between the number of molecules appear-
ing and disappearing per unit time. In the case of X1, the first
term is the production term involving a nonlinear nondissi-
pative regulation function. We take this as an unknown func-
tion. On the other hand, the concentration Xi ,1� i�n, in-
creases linearly with Xi−1. As is well known, in order to
express the fact that the metabolic product is a corepressor of
the gene, the regulation function should be a decreasing
function for which most of the authors use the Hill sigmoid,
the Heaviside, and the logoid curves. The decrease of the
concentrations through degradation, diffusion, and growth
dilution is taken proportional to the concentrations them-
selves. For further details of this regulation model we rec-
ommend the reader the review of De Jong �9�.

It is to be mentioned here that bacteria have a simple
mechanism for coordinating the regulation of genes that en-
code products involved in a set of related processes: these
genes are clustered on the chromosome and are transcribed
together. Most prokaryotic mRNAs are polycistronic �mul-
tiple genes on a single transcript� and the single promoter
that initiates the transcription of clusters is the site of regu-
lation for the expression of all genes in the cluster. The gene
cluster and promoter, plus additional sequences that function
together in regulation, are called operons. Operons that in-
clude two to six genes transcribed as a unit are common in
nature �17�.

The fact that two or more genes are transcribed together
on one polycistronic mRNA implies that we have a unique
mRNA production constant and consequently we also have
one mRNA degradation constant. In addition, the polycis-
tronic mRNA can be translated into one or several enzymes,
resulting in the existence of just one enzyme production and
degradation constant, respectively. The same applies for the
metabolite produced through the enzyme catalysis. Thus, if
the resulting metabolite has repressor activity over the poly-
cistronic mRNA �as in the case of tryptophan �18��, then the

model given by Eqs. �1� and �2� could also be applied to
operons, and therefore it has a plausible application to the
study of prokaryotic gene regulation.

IV. NONLINEAR SOFTWARE SENSOR

Numerous attempts have been made to develop nonlinear
observer design methods. One could mention the industrially
popular extended Kalman filter, whose design is based on a
local linearization of the system around a reference trajec-
tory, restricting the validity of the approach to a small region
in the state space �14,19�. The first systematic approach for
the development of a theory of nonlinear observers was pro-
posed some time ago by Krener and Isidori �20�. In further
research, nonlinear transformations of the coordinates have
also been employed to put the considered nonlinear system
in a suitable “observer canonical form,” in which the ob-
server design problem may be easily solved �21–23�. Never-
theless, it is well known that classical proportional observers
tend to amplify the noise of on-line measurements, which
can lead to the degradation of the observer performance. In
order to avoid this drawback, this observer algorithm is
based on the works of Aguilar et al. �24,25�, because the
proposed integral observer provides robustness against noisy
measurement and uncertainties. We show that this new struc-
ture retains all the characteristics of the popular �the tradi-
tional high gain� state observers of the classical literature and
furthermore provides additional robustness and noise filter-
ing and thus can result in a significant improvement of the
monitoring performances of the genetic regulation process.

In this section, we present the design of a nonlinear soft-
ware sensor in which one Xj, for j� �1,… ,n�, is the natu-
rally measured state �the most easy to measure�. Therefore, it
seems logical to take Xj as the output of the system

y = h�X� = Xj . �3�

Now, considering the constant K1n and the function r�Xn� as
unknown, we group them together in a function T�X�. In
addition, we consider that the output function h�X� is con-
taminated with a Gaussian noise. In such a case, the model
given by the aforementioned, Eqs. �1� and �2�, acquires the
form

�: �Ẋ = T̄�X� + l�X� ,

y = CX + � ,
�

where T̄�X� is a n	1 vector whose first entry is T�X� and all
the rest are zero, l�X� is also a n	1 vector of the form
�−�1X1 ,Ki,i−1Xi−1−�iXi�T ,�, is an additive bounded measure-
ment noise, and X�Rn. The system is assumed to lie in a
“physical subset” 
�Rn.

Then, the task of designing an observer for the system �
is to estimate the vector of states X, despite the unknown part

of the nonlinear vector T̄�X� �which should also be esti-
mated�, and considering that y is measured on line and that
the system is observable.

A particular representation of the software sensor that we
describe here is provided in Fig. 1.
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In order to provide the observer with robust properties
against disturbances, Aguilar and collaborators �24� consid-
ered only an integral type contribution of the measured error.
Moreover, an uncertainty estimator is introduced in the meth-
odology of observation with the purpose of estimating the

unknown components of the nonlinear vector T̄�X�. As a
result, the following representation of the system is pro-
posed:

�:�
Ẋ0 = CX + � ,

Ẋ = T̄ + l�X� ,

T̄
˙

= ��X� ,

y0 = X0,
	

that is, in the case of the model given by Eqs. �1� and �2�,

Ẋ0 = Xj + �

Ẋ1 = Xn+1 − �1X1

Ẋi = Ki,iXi−1 − �iXi, 1 � i � n ,

Ẋn+1 = �X�

y = X0, �4�

where Ẋ0 is the dynamical extension that allows us to inte-
grate the noisy signal in order to recover a filtered signal,

while Ẋn+1 allows us to put the unknown regulation function
as a new state. Thus, the task becomes the estimation of this
new state �a standard task for an observer�, and therefore the
function  is related to the unknown dynamics of the new
state. At this point, X�Rn+2, and furthermore the following
equation is generated:

Ẋ = AX + B + E� ,

where AX is the linear part of the previous system such that
A is a matrix equivalent in form to a Brunovsky matrix, B
= �0,… ,0 ,�X��T and E= �1,0 ,… ,0�T.

We will need now the following result proven in Ref.
�24�.

An asymptotic-type observer of the system � is given as
follows:

�̂:�
X̂
˙

0 = CX̂ + �1�y0 − ŷ0� ,

X̂
˙

= T̄
ˆ

+ l�X̂� + �2�y0 − ŷ0� ,

T̄
ˆ̇

= �3�y0 − ŷ0� ,

ŷ0 = X̂0,

	
where the gain vector � of the observer is given by

� = S�
−1CT,

S�;i,j = 
 Si,j

�i+j+1� .

Each entry of the matrix S� is given by the above equation,
where S� is an n	n matrix �i and j run from 1 to n�, and Si,j
are entries of a symmetric positive definite matrix that do not
depend on �. Thus, Si,j are such that S� is a positive solution
of the algebraic Riccati equation,

S�
A +
�

2
I� + 
A +

�

2
I�S� = CTC . �5�

In all formulas, C= �1,0 ,… ,0�. In the multivariable case we
must create one matrix S� for each block corresponding to
each output. It is worth mentioning that we can think about
this observer as a “slave” system that follows the “master”
system, which is precisely the real experimental system. In
addition, S�, as functional components of the gain vector,
guarantees the accurate estimation of the observer through
the convergence to zero of the error dynamics, i.e., the dy-
namics of the difference between the measured state and its
corresponding estimated state. One can see that � generates
an extra degree of freedom that can be tuned by the user such
that the performance of the software sensor becomes satis-
factory for him.

In �28� it has been shown that such an observer has an
exponential-type decay for any initial conditions. Notice that
a dynamic extension is generated by considering the mea-
sured output of the original system as new additional dynam-
ics with the aim to filter the noise. This procedure eliminates
most of the noise in the new output of the system. The reason
of the filtering effect is that the dynamic extension acts at the
level of the observer as an integration of the output of the
original system �see the first equation of the system � and

the error part in the equations of system �̂�. The integration
has averaging effects upon the noisy measured states. More
exactly, the difference between the integral of the output of

FIG. 1. �Color online� A schematic of the software sensor, where
the output of the system is the input of the software sensor and the
outputs of the latter are the rebuilt concentrations.
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the slave part of system �̂ and the integral of the output of
the original system gives the error and the observer is
planned in such a way that the error dynamics goes assymp-
totically to zero, which results in the recovering of both the
filtered state and the unmeasured states.

A. Particular case

For gene regulation processes, which are of interest to us
here, we merely apply the aforewritten system of equations

corresponding to the asymptotic observer �̂,

Ẋ1 = K1,3r�X3� − �1X1, �6�

Ẋ2 = K2,1X1 − �2X2, �7�

Ẋ3 = K3,2X2 − �3X3. �8�

The pictorial representation of this system of equations is
given in Fig. 2.

The values of the parameters given in Table I, without
necessarily being the experimental values, are, however, con-
sistent with the requirements of the model.

Using the structure given by the equations of �̂, the ex-
plicit form of the software sensor is

X̂
˙

0 = X̂3 + �1�y0 − X̂3� ,

X̂
˙

1 = X4 − �1X1 + �2�y0 − ŷ0� ,

X̂
˙

2 = K2,1X1 − �2X2 + �3�y0 − ŷ0� ,

X̂
˙

3 = K3,2X2 − �3X3 + �4�y0 − ŷ0� ,

X̂
˙

4 = �5�y0 − X̂3� ,

ŷ0 = X̂0.

Notice that this dynamic structure does not involve the regu-
lation function.

We can solve Eq. �5� and for numerical purposes we
choose �=2.5 and the standard deviation of the Gaussian
noise of 0.001. Figure 3 shows the numerical simulation that
illustrates the filtering effect of the software sensor over the
noisy measured state.

On the other hand, Fig. 4 shows the results of a numerical
simulation, where the solid lines stand for the true states and
the dotted lines indicate the estimates, respectively.

V. THREE-GENE CIRCUIT CASE

In this section we extend the previous results to a more
complicated case that can occur in prokaryotic cells. We
study a more elaborated system where one regulator affects
different promoters and transcription units. The case corre-
sponds to the coupled regulation of three genes in which the

FIG. 2. �Color online� The genetic regulatory system given by
Eqs. �6�–�8� involving end-product inhibition according to De Jong
�9�. A is an enzyme and C a repressor protein, while K and F are
metabolites. The mathematical model, as used by De Jong and by
us, takes into account experiments where only metabolite K is
measured.

TABLE I. Parameters of the model.

Symbol Meaning Value �arb. units�

K1,3 Production constant of mRNA 0.001

K2,1 Production constant of protein A 1.0

K3,2 Production constant of metabolite K 1.0

�1 Degradation constant of mRNA 0.1

�2 Degradation constant of protein A 1.0

�3 Degradation constant of metabolite K 1.0

� Hill’s threshold parameter 1.0

FIG. 3. �Color online� Numerical simulation: solid lines repre-
sent the filtered states and the dotted lines represent the noisy mea-
sured state for the evolution in time of metabolite K concentration.
Notice that the initial bad estimation is due to the initial conditions
that have been chosen far away from the real ones. This behavior
could be improved with better knowledge of the initial conditions.
The units of the two axes are arbitrary, i.e., the model is
nondimensional.
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metabolite resulting from the translation of gene 1 becomes
the substrate for the synthesis of the metabolite catalyzed by
the enzyme translated from gene 2, and similarly for gene 3,
but the metabolite 3 becomes the repressor of all the three
genes involved, as shown in Fig. 5.

In this case the model is given by an extension of the
model given by Eqs. �1� and �2�. That results in the following
system of differential equations:

d

dt
�mRNA1� = K1R��Met3�� − �1�mRNA1�

d

dt
�Enz1� = K2�mRNA1� − �2�Enz1�

d

dt
�Met1� = K3�Enz1� − �3�Met1� − �1�Enz2�

d

dt
�mRNA2� = K4R�Met3� − �4�mRNA2�

d

dt
�Enz2� = K5�mRNA2� − �5�Enz2�

d

dt
�Met2� = K6�Enz2� − �6�Met2� − �2�Enz3�

d

dt
�mRNA3� = K7R��Met3�� − �7�mRNA3�

d

dt
�Enz3� = K8�mRNA3� − �8�Enz3�

d

dt
�Met3� = K9�Enz3� − �9�Met3� ,

where �mRNAi�, �Enzi� and �Meti� represent the concentra-
tion of mRNA, enzymes, and metabolites for each gene, re-
spectively. We select as the measured variables the metabo-
lites because we want to show that through the measurement
of stable molecules such as the metabolites, it is possible to
infer the concentration of unstable molecules such as the
mRNAs. Note that the equations are coupled through the
dynamics of the metabolites. Moreover, we will assume that
the dynamics of mRNA is bounded but unknown.

As we showed in the previous sections our new system
can be written as

Ẋ1 = X2 + d1, �9�

Ẋ2 = K3X3 − �3X2 − �1X8, �10�

Ẋ3 = K2X4 − �2X3, �11�

Ẋ4 = X5, �12�

Ẋ5 = �1�X� , �13�

Ẋ6 = X7 + d2, �14�

FIG. 4. �Color online� Numerical simulation: solid lines repre-
sent the true states generated by the original process endowed with
the Hill regulatory function and dotted lines represent the estimated
concentrations provided by the software sensor without any knowl-
edge about the regulatory function. Plot �a� represents the evolution
of mRNA concentration in time and plot �b� the variation of the
concentration of protein A in time. The two axes have arbitrary
units.

FIG. 5. �Color online� The three-gene regulatory circuit under
consideration.
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Ẋ7 = K6X8 − �6X7 − �2X13, �15�

Ẋ8 = K5X9 − �5X8, �16�

Ẋ9 = X10, �17�

Ẋ10 = �2�X� , �18�

Ẋ11 = X12 + d3, �19�

Ẋ12 = K9X13 − �9X12, �20�

Ẋ13 = K8X14 − �8X13, �21�

Ẋ14 = X15, �22�

Ẋ15 = �3�X� , �23�

where mRNA1= Ẋ4, mRNA2= Ẋ9, mRNA3= Ẋ14, Enz1= Ẋ3,

Enz2= Ẋ8, Enz3= Ẋ13, Met1= Ẋ2, Met2= Ẋ7, Met3= Ẋ12, di rep-
resent the noise, and �i�X� stand for the unknown dynamics.
In addition, the previous systems can be written in the matrix
form as

Ẋ = ĀX + B̄�X� + Ed, X � Rn,

y = C̄X = �C1X1
¯ CmXm�T, �24�

where in this case Xi�R�i is the ith partition of the state X so

that X= ��X1�T ,… , �Xm�T�T and �i=1
m �i=n; Ā

=diag�A1 ,… ,Am�, where Ai is �i	�i such that S�
i in the

equation �5� is invertible; C=diag�C1 ,… ,Cm�, where Ci

= �1,0 ,… ,0��R�i; B�X�=diag�B1�X�T ,… ,Bm�X�T�T; E
=diag�E1 ,… ,Em�, where Ei= �1,0 ,… ,0��R�i.

According to the scheme presented in the previous section
we construct an observer through the following system of
differential equations:

X̂
˙

1 = X̂2 + �11�X1 − X̂1� , �25�

X̂
˙

2 = K3X̂3 − �3X̂2 − �1X̂8 + �12�X1 − X̂1� , �26�

X̂
˙

3 = K2X̂4 − �2X̂3 + �13�X1 − X̂1� , �27�

X̂
˙

4 = X̂5 + �14�X1 − X̂1� , �28�

X̂
˙

5 = �15�X1 − X̂1� , �29�

X̂
˙

6 = X̂7 + �21�X6 − X̂6� , �30�

X̂
˙

7 = K6X̂8 − �6X̂7 − �2X̂13 + �22�X6 − X̂6� , �31�

X̂
˙

8 = K5X̂9 − �5X̂8 + �23�X6 − X̂6� , �32�

X̂
˙

9 = X̂10 + �24�X6 − X̂6� , �33�

X̂
˙

10 = + �25�X6 − X̂6� , �34�

X̂
˙

11 = X̂12 + ��9X̂12 + �32�X11 − X̂1� , �35�

X̂
˙

13 = K8X̂14 − �8X̂13 + �33�X11 − X̂11� , �36�

X̂
˙

14 = X̂15 + �34�X1 − X̂1� , �37�

X̂
˙

15 = �35�X11 − X̂11� , �38�

where �i stands for the observer gain values. Note that this
extension is not a direct application of that developed by
Aguilar et al. �24�, in the sense that this is a extension to the
multivariable case. In addition, the matrix Ai is equivalent to
a matrix of the Brunovsky form, which guarantees the exis-
tence, uniqueness, and invertibility of the matrix solution S�

i

�26�. �The existence and the uniqueness of S�
i follows from

the facts that −��i /2�I−Ai is of the Hurwitz type and that the
pair (−��i /2�I−Ai ,Ci) is observable �27��.

Figure 6 shows the numerical simulation of the filtering
effect of the software sensor over the noisy measured state in
this case. On the other hand, Fig. 7 displays the results of a
numerical simulation of the true states �solid lines� and the
estimates �dotted lines�.

VI. CONCLUSION

In this research, a simple software sensor was designed
for a schematic gene regulation dynamic process involving

FIG. 6. �Color online� Numerical simulation: solid lines repre-
sent the filtered states obtained from the noisy measured states for
the evolution in time of metabolite concentrations, where a, b, and
c correspond to metabolites 1, 2, and 3, respectively. The units of
the two axes are arbitrary �nondimensional model�.
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endproduct inhibition in single gene, operon, and three-gene
circuit cases. This sensor effectively rebuilds the unmeasured
concentrations of mRNA and the corresponding enzyme.
Thus, the limitation of those experiments in which only the
concentration of the catalytically synthesized metabolite is
available, can be overcome by employing the simple soft-
ware sensor applied here. This is quite a natural case if one
takes into account that metabolites are quite stable at the
molecular level. At the same time, we can reproduce the
concentrations of the unstable molecules of mRNA. This is a
difficult task in experiments, despite the fact that the mRNA
dynamics has been partially or even totally unspecified.

The same scheme philosophy to build the observer is ap-
plied to a three-gene circuit with the purpose of showing that
the software sensor concept could be in usage in a forward
engineering approach. In this research, however, we men-
tioned that we were able to show that the observer scheme
designed in �24� for the single output case works well also in
a multiple variable case, as embodied by a particular genetic
circuit given in Fig. 5. The most stringent mathematical re-
quirement for this extended applicability to the multiple out-
put case is described below. The linear part of the dynamic
system should be a matrix by blocks in which each of the
blocks should be of the Brunovsky equivalent form. In addi-
tion, each subsystem corresponding to a superior block de-
pends only on the subsystem corresponding to the next near-
est block. This is a feature similar to the property of Markoff
processes. The Brunovsky equivalent form of the matrix
blocks Ai together with the structure of the corresponding
output vector Ci generate an observable pair �Ai ,Ci�, giving
us the capability of inferring the internal states of the gene
network through the knowledge of its external outputs. How-
ever, the special Brunovsky equivalent form of the blocks
leads to the possible biological interpretation that each block
of the linear part of the differential system represents only
that contribution of the gene regulation mechanism that
comes from reactions occurring in a cascade fashion.

Another important issue that we tackled in this work is
related to the way of adding the noise to the output of the
dynamic system. Even though this is a typical situation from
the standpoint of control process theory, to the best of our
knowledge it has not yet been applied in the biological con-
text of gene regulation processes. We stress that this way of
including noise effects could have both intrinsic and extrinsic
interpretations and therefore assure a more general approach
of the noise problems. For example, in phenomenological
terms, perturbations on the cells due to the measuring de-
vices and the experimental conditions, together with the
noise produced by the nature of the electronic instrumenta-
tion, could be equally described in this way.

In addition, this type of nonlinear observer could be used
as an online filter being robust with respect to model uncer-
tainties, i.e., neither a known regulation function nor the pa-
rameter K1,3 is required.
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